

1st WRF-Hydro Workshop, University of Calabria, Rende, Cosenza, 2014-06-11

WRF-Hydro Simulation of the Himalayan Beas River Basin

Lu Li¹, David Gochis², Michel d.S. Mesquita¹ 1. Uni Research Climate & Bjerknes Center of Climate Research, Norway 2. National Center for Atmospheric Research, Boulder, USA

Acknowledgements: NORINDIA project and JOINTINDNOR Project

ARRANGEMENT DATO STED

ANTE SEAL OF MARINE RESE

Himalaya region

- ✓ The source of one of the world's largest supplies of fresh water.
- ✓ 800 million people live in the catchments of the Indus, Ganges, and Brahmaputra rivers.
- ✓ Climate change

Fig: Study region and trends of elevation differences between ICESat and SRTM over 2003–08.

A Kääb et al. Nature 488, 495-498 (2012) doi:10.1038/nature11324

uni Research

A HAVFORSKNINGSINSTITUTTET

Precipitation

- Precipitation is crucial in hydrological science!
- ✓ Himalaya limited in observations
- ✓ Influenced by terrain
- Hardly can captured accurately by the gridded dataset

Numerical weather prediction models (high resolution!)

Objective

- To investigate the WRF capability in producing high-resolution precipitation in Beas river basin;
- To compare two microphysics (MP) schemes;
- To set up WRF-Hydro in Beas river basin and specify if it able to capture accurate precipitation and runoff for long period.

Study area - Beas

Fig: Beas basin (http://www.nih.ernet.in/ rbis/basin%2 0maps/Indus/beas.htm) Fig : Beas sub-basin up to Pandoh

Data

 Precipitation comparison: TRMM 3B42 (1998-2009)
Seven gauge rainfall data (1996-2006)

• WRF-hydro DATA:

Forcing data: 6 hourly ERA-Interim (1996-2001) DEM: HydroSHED (3-arc second)

Daily discharge of Thalout (1996-2001)

Fig. Cumulative rainfall of 1990–2004 (from Vijay Kumar et al., 2010)

Method

- WRF-ARW 3.5.1 experiments of two Microphysics schemes;
- WRF-Hydro v2.0 offline run for discharge calibration;
- Forcing precipitation assessments by TRMM and gauge rainfall;
- Comparison of two MPs in precipitation downscaling by gauge rainfall (including spatial and temporal variability, statistic distributions).
- The runoff assessment by Nash-Sutcliffe efficiency (NS), absolute value of the volume error (VE) and daily hydrograph.

WRF-hydro

- > WRF: Weather Research and Forecasting Model
- NDHMS: the NCAR Distributed hydrological Modeling System (Noah based)
- > WRF-hydro : NDHMS coupling with WRF

WRF-Hydro Domain design

UNIVERSITY OF BERGEN

uni Research Nansen Cente

A HAVFORSKNINGSINSTITUTTET

WRF-Hydro

Noah LSM grid (3 km)

Routing grid (300 m)

Routing channels (300 m)

AVFORSKNINGSINSTITUTTET

Experiments design

TABLE I DESIGN OF WRF EXPERIMENT

Name	Physical MP schemes
CU (1)	Kain–Fritsch Scheme*
MP (3)	simple 3- class scheme
MP (8)	Thompson Scheme
LS (1)	Unified Noah Land Surface Model
PBL (1)	Yonsei Univeristy scheme
LW (1)	RRTM scheme
SW (1)	Dudhia scheme
Boundary	ECMWF ERA-Interim reanalysis data

- ✓ A standard set-up was used with 40 vertical layers
- ✓ The model time-step was around 8 s in the small domain
- ✓ The simulation was run from 1996 to 2001 and the first year of 1996 is for initialization.
- ✓ The sea-surface temperature (SST) was updated (sst_skin=1) by forcing data.

Forcing precipitation assessment (monthly)

NERSC

uni Research

a

UNIVERSITY OF BERGEN

Spatial variability: Annual precipitation (1997-2001)

Spatial variability: Seasonal precipitation of WRF-MP8 (1997-2001)

Spatial difference of two WRF-MPs (1997-2001)

Temporal differences: Monthly precipitation (1997-2001)

UNIVERSITY OF BERGEN

Statistic analysis: KS and correlations

KS test and correlation of daily precipitation between MP3 and MP8.

WRF-hydro/MP3 Domain3: annual mean (mm)

Precipitation

Ð

Aera: 354*354 km

Time: 1996-2001

WRF-hydro/MP8 Domain3: annual mean (mm)

Ð

Aera: 354*354 km

Time: 1996-2001

RUNOFF (without routing)

WRF-Hydro/MP3: monthly NS efficiency = 0.47 VE = 38% WRF-Hydro/MP8: monthly NS efficiency = 0.68 VE = 24%

1998 RUNOFF (without routing)

Summary

• Spatial variability:

- ✓ highly related to the topography in Beas;
- ✓ In winter, precipitation of MP8 is smaller than MP3, especially in mountain area;
- In summer, precipitation of MP8 is much larger than MP3 over 400 mm/year, especially over downstream area;

• Temporal variability:

- The monthly variability have been captured fairly well by 3km WRF simulations, although the precipitation from WRF-MP3 is under-estimated while WRF-MP8 is over-estimated (especially in summer);
- ✓ MP8 is more closer to Gauge rainfall than MP3;
- Statistic analysis: the daily precipitation distributions (6years) of two MPs is hardly the same, only some grids in mountain area; the correlation between two MPs daily precipitations is increasing with the elevation increasing.
- Water cycle elements: more precipitation and snowmelt from MP8 than MP3, while soil water increased more from MP3 than MP8, especially in mountain area mainly results from higher precipitation.
- The 6 yrs runoff: MP8 has 0.68 NS and 24% absolute volume error which is better than MP3.

Thank you !

lu.li@uni.no

Acknowledgements:

Dr. Stefan Sobolowski (Uni Research AS, Bergen, Norway) Dr. Wei Yu (NCAR, Boulder, USA) Prof. Chongy-Yu Xu (University of Oslo, Oslo, Norway) Prof. Sharad K. Jain (National Institute of Hydrology, Roorkee, India)